Drei Trends verändern die Werksumgebung

Bild: ©kinwun/stock.adobe.com

Wie die dritte industrielle Revolution dreht sich auch die Industrie 4.0 um den Einsatz von Robotik und computergestützter Ausrüstung. Sie zeichnet sich jedoch durch einen verstärkten Fokus auf die Verbindung von Systemen untereinander und die vollständige Nutzung der von den einzelnen automatisierten Teilsystemen gesammelten Daten aus. Aufgrund der zentralen Bedeutung, die der Kommunikation in der Industrie 4.0 zukommt, greift diese das Konzept des industriellen Internets der Dinge (IIoT) auf. Durch die Einführung von Datenanalysen, Kommunikation und Echtzeitsteuerung werden Roboter und Werkzeugmaschinen zu cyber-physischen Systemen, die wesentlich intelligenter auf veränderte Bedingungen reagieren können. Ihre Fokussierung auf die informationstechnologischen Aspekte der industriellen Steuerung bedeutet nicht, dass die Industrie 4.0 auf einer vollständigen Automatisierung beruht. Viele Produktionsvorgänge erfordern weiterhin Eingriffe durch Menschen.

Bild: ©Ehrenberg-bilder/stock.adobe.com

Roboter und Mensch gemeinsam

Im Gegensatz zur Vergangenheit, als Roboter in Sicherheitskäfigen installiert wurden, geht der Trend hin zum Einsatz von Cobots: Roboter und Werkzeuge, die direkt mit Menschen zusammenarbeiten. Dies soll einen flexibleren Betrieb ermöglichen, bei dem Produktionszellen Arbeitsvorgänge schnell ändern können. Dadurch können die Zellen auf plötzliche Änderungen des Fertigungsbedarfs für verschiedene Produkte und Varianten reagieren. Dies wiederum bedeutet, dass die Zellen auf einen viel reichhaltigeren Satz von Datenströmen reagieren und entsprechend planen müssen. Bisher wurden Werkzeugmaschinen und Roboter oft so konzipiert, dass sie auf ihre eigenen Gegebenheiten reagieren, indem sie beispielsweise mithilfe eingebauter Sensoren erkennen, ob Toleranzen überschritten werden. Es wird erwartet, dass die Fähigkeit zur Selbstüberwachung in den kommenden Jahren stärker genutzt wird, um unvorhergesehene Ausfälle zu verhindern und Wartungsarbeiten zu optimieren. In einem Industrie 4.0-Szenario können Werkzeuge auf Daten reagieren und dadurch schnell mit veränderten Bedingungen umgehen. Prozesse können beispielsweise Heiz- und Trocknungszeiten an unterschiedliche Feuchtigkeitsgehalte in Materialien oder an die Umgebungsfeuchtigkeit anpassen – Schwankungen werden reduziert, die Produktqualität nimmt zu. Produkte einiger Lieferanten verleihen bestimmten Maschinentypen zudem neue Fähigkeiten. Das Motion Terminal VTEM von Festo kann beispielsweise Apps ausführen, die den Betrieb auf verschiedene Situationen abstimmen. Die Qualitätskontrolle ist ein Schwerpunkt der programmierbaren Kupplungswerkzeuge mit HS-Technik von Panasonic. Integrierte Sensoren erfassen und bewerten Anzugsmoment- und Winkelwerte, die für die Qualitätskontrolle in Situationen mit hohem Durchsatz entscheidend sind.

Trend Nr. 1 – Simulation

Der vermehrte Einsatz von Produktionswerkzeugen und Robotern liefert umfangreiche Daten für die Fertigung, mit denen fundiertere Konstruktionsentscheidungen getroffen werden können. Zudem helfen die Daten dabei, den Lebenszyklus eines Produkts zu verwalten. Am Ende steht der digitale Zwilling. Durch Unterstützung eines digitalen Abbilds jedes ausgelieferten physischen Produkts, das einen Großteil der während der Produktion und während seiner Lebensdauer gewonnenen Sensordaten enthält, soll der digitale Zwilling die Messung der Wirksamkeit des physischen Produkts erleichtern. Wichtig für das Digital-Twin-Konzept ist die Technologie der Simulation. Anstatt sich ausschließlich auf Muster in Sensordaten zu stützen, kann die Simulation des digitalen Zwillings anhand der aufgezeichneten Informationen potenzielle, bisher verborgene Probleme aufzeigen. Dies trägt nicht nur zur Instandhaltung bei, sondern kann auch das Design von Folgeprodukten beeinflussen. Adrian Lloyd von Interact Analysis weist darauf hin, dass die Simulation des digitalen Zwillings nicht nur bei Produkten hilft, sondern auch bei den Produktionslinien, auf denen diese hergestellt werden. Ein Beispiel bietet das Automobil-Startup VinFast. In Zusammenarbeit mit Siemens nutzte das Unternehmen die Simulation von Betriebslayouts, um den Durchsatz und die Produktivität bereits vor der Installation von Werkzeugen zu verbessern, was im Vergleich zu den traditionellen Ansätzen zum Aufbau solcher Produktionslinien massive Einsparungen brachte. Als ‚Zero Engineering‘ bezeichnet Schneider Electric die Idee, mithilfe von Simulationen Produktionslinien zu entwickeln, wobei das Konzept auch auf die Programmierung der einzelnen Steuergeräte ausgedehnt wird. Anstatt Produktionskapazitäten für Programmierungs- und Testarbeiten zu binden, ist es nun möglich, mit Modicon- und Aveva-Controllern im virtuellen Bereich zu experimentieren und diese zu konfigurieren. Digital-Twin-Lösungen verknüpfen virtuelle Modelle mit physischen Systemen. Wenn die Änderung erforderlich ist, wird die Programmierung vom einen auf das andere Element übertragen. Laut ABB kann die virtuelle Inbetriebnahmeansätze die gesamte Konstruktionszeit um 20 Prozent, den Kapitalaufwand um 25 Prozent und die Schulungszeit um die Hälfte reduzieren. Um den Ansatz zu fördern, bietet das Unternehmen die virtuelle Inbetriebnahmelösung Ability an, die nicht nur die digitale Konfiguration unterstützt, sondern auch Virtual-Reality-Schnittstellen bietet, um eine effektive und zeitnahe Bedienerschulung zu ermöglichen.

Trend Nr. 2 – intelligente Sensoren

Die Verwendung von Sensoren wird innerhalb von Fertigungsstätten und darüber hinaus weit verbreitet sein. Lieferanten wie Omega oder Omron bieten ein breites Spektrum an Modellen an, die unter anderem induktive, faseroptische, magnetische, Druck- und Lasertriangulationstechniken einsetzen. Angesichts der Nachfrage nach genauen Messungen prognostiziert die Analystengruppe Mordor Intelligence für den globalen IoT-Sensormarkt von 2020 bis 2025 eine kumulierte jährliche Wachstumsrate von knapp über 24 Prozent. Laut einer Studie von Ericsson könnten bis 2021 von den insgesamt 28 Milliarden Geräten, die mit dem Internet verbunden sind, fast 16 Milliarden IoT-Geräte sein, und die Fertigung wird einen großen Anteil an der Gesamtmenge ausmachen. Ein gängiges Nutzungsmodell für Sensordaten in der heutigen Umgebung ist es, einen Großteil davon an die Cloud zu senden. Mit fortschreitender Sensorausbreitung wird die Umsetzung dieser Praxis zunehmend schwieriger. Dabei wird eine lokale Verarbeitung erforderlich sein, um Daten zu analysieren und Erkenntnisse zu gewinnen und dann ein komprimiertes Formular, das nur signifikante Statusänderungen enthält, auf Cloud-Server zur weiteren eingehenden Analyse hochzuladen. Leistungsstarke, kostengünstige Edge-Computing-Hardware ist entscheidend dafür und wird von führenden Lieferanten in einer Vielzahl von Formen angeboten. Omron hat KI-Funktionalität in seine Symaec-Steuerungsplattform integriert, während Opto22 mit seiner Groov-Modulfamilie leistungsstarkes Computing für die Echtzeitsteuerung in der Arbeitsumgebung anbietet.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert