Künstliche Intelligenz macht Fabriken clever

Mit dem Sorting Guide von Trumpf sollen sich mit Hilfe von Künstlicher Intelligenz Blechteile schnell und einfach sortieren lassen. Durch selbstlernende Bildverarbeitung erkennt das KISystem entnommene Teile und gibt über den Bildschirm eine Empfehlung zum Absortieren.
Mit dem Sorting Guide von Trumpf sollen sich mit Hilfe von Künstlicher Intelligenz Blechteile schnell und einfach sortieren lassen. Durch selbstlernende Bildverarbeitung erkennt das KISystem entnommene Teile und gibt über den Bildschirm eine Empfehlung zum Absortieren.

„Beim Dezentralen Machine Learning werden mehrere Maschinen miteinander vernetzt und bilden gemeinsam ein KI-System“, erklärt Prenode-Geschäftsführer Hirt das Prinzip. Dabei sammeln die Maschinen kontinuierlich lokal Daten über ihre Arbeitsvorgänge. Dann wird für jede Maschine ein KI-Modell entwickelt, das anschließend zentralisiert wird. „In einer zentralen Cloud werden diese Modelle dann fusioniert und wieder in die einzelnen Anlagen zurück übertragen“, so Hirt weiter. Das KI-System könne dann lokal auf alle Erfahrungen der anderen Maschinen zurückgreifen, ohne dass jemals sensible Rohdaten ausgetauscht werden müssten. „Auf diese Weise können die Maschinen ihre Arbeitsvorgänge effizienter gestalten und eine höhere Produktivität erreichen“, verspricht Hirt.

Beim Sorting Guide von Trumpf soll das konkret so funktionieren: Durch vorhandene Stammdaten und selbstlernende Bildverarbeitung erkennt der Sorting Guide entnommene Teile und gibt über den Bildschirm eine Empfehlung zum Absortieren. Die produzierten Teile sind auf dem Bildschirm farbig markiert, beispielsweise nach Kundenauftrag oder folgenden Arbeitsschritten wie z.B. Abkanten, Entgraten, Lackieren oder Versand. Aufwändiges Nachzählen der Teile und manuelle Rückmeldungen oder Begleitpapiere sollen so überflüssig werden. Das Bedienpersonal der Maschine sieht auf einen Blick, welche Teile bereit sind für die Weiterverarbeitung und wo gegebenenfalls die Nachproduktion eingeleitet werden muss. Das Absortieren wird beschleunigt, Fehler werden vermieden, und die Maschine kann schneller weiter produzieren. KI und Fertigung gehen Hand in Hand, da Menschen und Maschinen im industriellen Produktionsumfeld eng zusammenarbeiten müssen.

Zerspanung wird mit Datenanalyse optimiert

Auf Künstliche Intelligenz setzt auch ein neues Verfahren, das den Werkzeugverschleiß in Zerspanungsprozessen, also etwa beim Bohren oder Fräsen, analysiert. Einerseits sollen die teuren Werkzeuge möglichst lange eingesetzt werden. Andererseits ist es wichtig, die Restlebensdauer genau abzuschätzen. Denn ein Werkzeugbruch und ein zerstörtes teures Werkstück oder sogar ein Schaden an der Werkzeugmaschine müssen vermieden werden.

Bislang löst man diesen Zielkonflikt so: Die Werkzeuge werden vorzeitig nach einer erfahrungsbasierten Zahl von Arbeitsgängen ersetzt, um Qualitätsverluste oder gar teure Stillstandzeiten durch Werkzeugbrüche zu vermeiden. Allerdings kostet der Werkzeugaustausch Zeit und Geld, weshalb es sich lohnt, die Wechselzyklen zu optimieren.

Hier kommt die KI ins Spiel. Um den Verschleißzustand zuverlässig vorhersagen und so Zerspanprozesse optimieren zu können, haben Forscher der Technischen Universität Kaiserslautern ein Verfahren entwickelt, das das System anhand von realen Prozess- und Messdaten trainiert.

Konkret läuft das so: Um den Verschleißzustand von Zerspanwerkzeugen vorhersagen zu können, werden zunächst prozessbezogene Kenngrößen herangezogen. Dazu zählen u.a. die beim Zerspanen wirkenden Kräfte, Schwingungen der Maschine sowie der Leistungsbedarf der Maschinenachsen. Ebenso werden Daten aus kontinuierlichen Messungen am Werkzeug und am Werkstück gesammelt. Die größte Herausforderung besteht dann darin, Korrelationen in den gesammelten Daten zu ermitteln.

Suche nach Mustern

Hierfür trainieren die Forscher das KI-gestützte System, das Methoden des Maschinellen Lernens nutzt, um mögliche Muster zu erkennen und daraus Schlüsse zum Verschleißzustand abzuleiten. Darüber hinaus soll es vorhersagen können, mit welchen Prozessparametern Unternehmen bei bestimmten Zerspanprozessen arbeiten müssen, um das Werkzeug für eine angestrebte Nutzungsdauer zuverlässig im Einsatz zu halten. Die Daten, die das System zum Lernen braucht, werden bei fünf Partnerunternehmen erhoben – darunter sind Global Player ebenso wie kleine und mittlere Unternehmen. Dabei werden verschiedene Varianten durchgespielt, was etwa Werkzeug- und Werkstofftypen oder Prozessparameter betrifft, und so eine breite Datenbasis über die gesamte Lebensdauer bis hin zum Versagen des Werkzeugs erfasst.

Künstliche Intelligenz ist schon ziemlich schlau, aber noch lange nicht perfekt. Zu unterschiedlich sind die einzelnen Prozesse von Anwendungsfall zu Anwendungsfall. Maschinelles Lernen dient daher als Entscheidungsunterstützung für den Werkzeugwechsel. Immer besser werden soll das System durch das so genannte Transfer Learning: Hierbei wird Wissen von verwandten, bereits gelernten Aufgaben genutzt, um Machine-Learning-Modelle schneller für neue, aber verwandte Aufgaben trainieren zu können.

IIP-Ecosphere für niedrigschwelligen Zugang

Gleichwohl sind die Vorteile von Künstlicher Intelligenz in der industriellen Fertigung gerade für kleine Unternehmen nicht immer offensichtlich. Viele haben Bedenken, ihre Produktionsdaten zur eingehenden Analyse durch Computer freizugeben.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert